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Abstract

An adaptive generalized predictive control (GPC) algorithm was formulated and
applied to the cavity flow-tone problem. The algorithm employs gradient descent
to update the GPC coeflicients at each time step. Past input-output data and an
estimate of the open-loop pulse response sequence are all that is needed to implement
the algorithm for application at fixed Mach numbers. Transient measurements made
during controller adaptation revealed that the controller coefficients converged to
a steady state in the mean, and this implies that adaptation can be turned off
at some point with no degradation in control performance. When converged, the
control algorithm demonstrated multiple Rossiter mode suppression at fixed Mach
numbers ranging from 0.275 to 0.38. However, as in the case of fixed-gain GPC,
the adaptive GPC performance was limited by spillover in sidebands around the
suppressed Rossiter modes. The algorithm was also able to maintain suppression
of multiple cavity tones as the freestream Mach number was varied over a modest
range (0.275 to 0.29). Beyond this range, stable operation of the control algorithm
was not possible due to the fixed plant model in the algorithm.
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1 Introduction

This article is the second of two parts that describes experiments aimed at
the development of a real-time adaptive controller for the cavity flow-tone
problem. Of particular interest is the self-tuning adaptive controller shown in
Fig. 1. The inner loop of this control structure is a dynamic feedback control
system comprised of the process and controller. In the outer loop, system
identification is performed to estimate the parameters of a dynamic model
for the process and these are subsequently used to design the control law.
Running this outer loop at the sample rate of the inner loop feedback control
system allows the system to track process changes and maintain the control
objective.

As a first step towards a self-tuning adaptive controller, Part I considered
the application of a dynamic feedback controller to the cavity flow-tone prob-
lem, with model identification and control design performed offline in a batch
mode. That approach was based on the assumption that the cavity dynamics
were linear and time invariant for any given fized Mach number. The result
was a series of linear, fixed-gain control laws valid only for the Mach numbers
at which they were designed. The particular control design methodology used
in Part I was generalized predictive control (GPC). The GPC demonstrated
simultaneous suppression of multiple Rossiter modes at fixed Mach numbers
ranging from 0.275 to 0.38. The suppression was found to be global since
all pressure sensors within the cavity exhibited similar reductions in cavity-
tone amplitudes. This success indicates that the approach taken is a sound
methodology for cavity flow-tone control and sets the framework for an adap-
tive controller. The need for an adaptive controller is evident in the results of
Part I, where small changes in the Mach number were found to degrade the
performance of fixed gain control laws. The Mach number sensitivity of the
cavity dynamics therefore necessitates an adaptive control design algorithm
that adjusts the controller coefficients to maintain optimal suppression.

Previous attempts at adaptive control of cavity-flow tones have been reported
in the literature. Cattafesta et al. [2] applied an adaptive disturbance rejection
algorithm to a cavity flow at Mach 0.74 and achieved 10 dB suppression of
a single Rossiter mode. Other modes in the cavity spectrum, however, were
unaffected by the control system. While the disturbance-rejection algorithm
should be able to suppress multiple tonal components, insufficient actuator
bandwidth and authority limited the control performance to a single mode.
Williams and Morrow [3] applied an adaptive feedforward scheme to the cav-
ity flow-tone problem and demonstrated multiple cavity-tone suppression at
Mach numbers up to 0.48. This was accompanied, however, by simultaneous
amplification of other cavity tones. In general, a feedforward scheme that does
not account for the feedback path from the actuator to the reference sensor



inside the cavity will result in a poorly performing or unstable control sys-
tem. Numerical simulations were used by Kestens and Nicoud [4] to study the
adaptive control of cavity-flow tones. In that study, the filtered-x LMS algo-
rithm was used to minimize the output of a single error sensor, i.e., a point
measurement of pressure in the computational domain. A reduction in the
pressure associated with a single Rossiter mode was achieved, but only within
a small region around the error sensor. Several factors contribute to the poor
control performance. First, system identification was performed with no flow,
and so the process dynamics associated with the aeroacoustic feedback loop
are not properly modeled. Second, the finite impulse response (FIR) filters
used to represent the process dynamics are unsuitable for the cavity flow [5],
where lightly damped modes dominate the acoustic spectrum. Finally, similar
to the feedforward scheme used by Williams and Morrow, the reference signal
senses the control input. Although these past efforts have not met with great
success, the application of adaptive control to the cavity flow-tone problem
should not be ruled out since it is clear that hardware limitations, subopti-
mal control algorithms, and suboptimal process model selection /identification
contributed to poor control performance.

To move further towards a self-tuning adaptive controller for the cavity flow-
tone problem, this article focuses on the controller design block shown in
Fig. 1. Specifically, the offline GPC design presented in Part I is extended
to a recursive algorithm that updates the coefficients of a GPC control law
at every time step. The coefficient updates are computed as a convolution of
error sensor responses with a fixed plant model that is computed offline in
a batch mode. This approach provides some adaptability to changes in the
plant. Nonetheless, for a given fixed Mach number, the control performance
for a control law designed online is expected to yield similar performance to
a control law designed offline.

In the next section, the control methodology and adaptive GPC algorithm
are presented. This is followed by a description of the experimental setup.
The results section presents the transient and steady-state characteristics of
the adaptive controller as applied to the cavity-flow test bed. Comparisons
of fixed gain and adaptive GPC results are then made, followed by adaptive
control results for a time varying Mach number.

2 Control Methodology

In this section, the control methodology and adaptive GPC algorithm are pre-
sented. The overall control objective is to minimize the fluctuating pressures
on the cavity walls. This is achieved by placing a piezoelectric flap actuator
at the cavity leading edge with the aim to cancel shear layer instability waves



due to the aeroacoustic feedback. Pressure transducers embedded in the cavity
walls provide feedback signals and performance measures for the controller.

In part I, the cavity dynamics were found to be characterized as the forced
response of a lightly-damped system. Therefore, an auto regressive exogenous
input (ARX) model structure was chosen to represent the open-loop cavity-
flow dynamics:

y(k) = ary(k — 1) + ...+ opy(k —p) + Bouw(k) + ...+ Bpu(k —p), (1)

where y(k) are the m x 1 wall-pressure outputs, u(k) are the r x 1 actuator
inputs, p is the model order, and k is the current time step. The coefficient
matrices, a; (i = 1,2,...,p) of m x m and f; (i = 0,1,2,...,p) of m x r,
are the ARX parameters or the observer Markov parameters. To determine
the observer Markov parameters of the model, the observer/Kalman filter
identification (OKID) algorithm of Juang et al. [6-8] was applied to input-
output data collected from the baseline cavity flow. The parameters for this
model structure will be different for any given fixed Mach number, but are
assumed to remain constant at a given condition.

2.1 Adaptive Generalized Predictive Control

The present objective is to develop a recursive update equation for the coeffi-
cients of a generalized predictive controller. To that end, a predictive matrix
equation based on the ARX model is formed, a cost function representing
the desired control objective is defined, and a stochastic gradient-descent al-
gorithm is used to iteratively search for the optimal control coefficients that
minimize the cost function. As in Part I, the predictive matrix equation formed
from the ARX model in Eq. 1 is given by [7-10]:

YS(k) - mS(k) + ®Vp(k _p)7 (2>

where y4(k) is an sm x 1 vector of current and future wall-pressure outputs:

ys(k) = : : (3)




u,(k) is an sr x 1 vector of current and future actuator inputs:

u(k)
u(k +1)

u(k+s—1)

and v,(k—p) is a p(m+r) x 1 vector of past inputs and outputs running from
time step k — p to k — 1:

u(k —p)

wk—p =" 5)
y(k —p)
y(k —1)

The parameter s is referred to as the prediction horizon. The predictive matrix
equation states that the future output data depends on the future control
inputs and past input-output data. The matrix T is an sm x sr Toeplitz
matrix:

By
A

T=| & & A (6)
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where (), ﬁél), cee ﬁésil) are the pulse response parameters of the open loop
plant. These parameters can be obtained from the observer Markov parameters
[7]. The rectangular matrix © is formed with a set of recursive equations and
the ARX parameters [7]. As will be shown below, however, this matrix is not
needed in the real-time implementation of the adaptive controller.

Previously, the vector for current and future control inputs, us(k), was pro-
portional to the vector of past inputs and outputs, v,(k — p). That is, the



GPC designed in an offline batch mode can be represented by:

u,(k) = Hv,(k - p), (7)

where H denotes the sr x p(m +r) matrix of controller coefficients. While the
coefficients in that case were constant values for a given Mach number, the
development below will result in a recursive equation that updates the values
of H at each time step, k, always seeking to minimize a desired cost function.

With the control objective being disturbance rejection at the system output,
or minimization of wall-pressure output, an appropriate cost function can be

defined as:

J=yi(k)Qys(k) +-tr (H'H), (8)

where J is a scalar value, v is a scalar weighting factor, and ¢r(-) denotes
the trace of the matrix in parentheses. The first term in Eq. 8 is the sum of
the weighted, squared output values over the prediction horizon and Q is a
sm x sm block-diagonal matrix of sensor weights:

Q1 0 0
Q=10 "0 (9)
0 0 Qs

where (); is an m x m diagonal matrix of sensor weights:

Qi :dlag (q17q27"'aQTn)‘ (10)

The sensor weights q1, - - -, ¢, take on values between 0 and 1. A value of zero
means that the sensor is not included in the cost function, but the sensor
information will still be used by the feedback controller.

The second term in the cost function penalizes the controller coefficients and,
as will be shown below, gives rise to a leakage factor in the update algorithm.
This penalty term differs from the one used in Part I, where an explicit penalty
term on the control input was used in the cost function, i.e., ul Au,. Both
penalty terms have the similar effect of imposing an effort penalty on the
control input to avoid large control inputs and actuator saturation. When
using the present cost function defined in Eq. 8, however, the resulting update
equation is easier to implement and less computationally expensive. With
the assumed model given in Eq. 2, and assuming the plant is time-invariant,
solving for the optimal controller becomes a linear algebra problem. The result



is a fixed-gain feedback controller which is optimal for a fixed Mach number.
This is essentially a receding horizon control law [11], and its use was discussed
in Part L.

To enable an adaptive controller that maintains good performance while the
Mach number is changing, a stochastic gradient descent algorithm is used to
minimize the cost function in Eq. 8. This algorithm updates the controller
coefficients at each time step with:

H(k + 1) = H(k) —ﬂagl({’”, (11)

where the gradient of J is an instantaneous or stochastic estimate and p sets
the adaptive rate of the algorithm. This equation is the basis for the well
known least-mean squares (LMS) algorithm [15,16].

The gradient of the cost function can be determined by substituting Eqs. 2
and 7 into Eq. 8 and taking the derivative with respect to H. After some
algebraic manipulation:

a;f;) — 2TTQy. (kv (k — p) + 29H(K). (12)

This expression for the gradient assumes that the derivative of v,(k — p)
with respect to H is zero. Since v, contains past values of the control in-
puts, u, this means that the derivatives of past control values with respect
to the current weight vector are assumed to be zero. Although this may not
be mathematically correct, this approximation has been used in the past to
derive other useful gradient descent algorithms for adaptive IIR filters [12].
These include Feintuch’s IIR-LMS algorithm [13], and Eriksson’s filtered-u
algorithm [14]. These algorithms are computationally simple and appear to
have a self-stabilizing property [12]. Nonetheless, more work needs to be done
to fully understand the relationship between the feedback version of the algo-
rithm presented here and the feedforward versions discussed by Eriksson and
Feintuch.

Substituting this expression into Eq. 11 gives:

H(k +1) = aH(k) — 20T Qy, (k)v (k - p) (13)

where o« = (1 — 2py). Examination of the update equation indicates that it
depends on future input values, us(k), and future output values, y,(k), and
so cannot be implemented in real time. However, assuming the gradient of
the cost function does not change significantly over the prediction horizon, s,



the data vectors can be shifted back in time by s time steps and the update
equation becomes:

H(k +1) = oH(k) — 20T Qy(k — s)v, (k —p — s). (14)

The variable « in the update equation is referred to as the leakage factor
and, as noted earlier, it arises from the 7 - tr(H"H) term in the cost func-
tion [17,18,15]. The value of « is typically set to slightly less than one (e.g.,
a = 0.9999). In that case, the controller coefficients come close to, but never
reach, their optimal values. Instead, they constantly fluctuate in a region about
their optimal values. The benefits of leakage in the update equation include
improved robustness and rate of convergence [18,15,16]. Leakage also counter-
acts parameter drift that can occur in the standard LMS algorithm [15]. Most
importantly, leakage acts like an effort penalty on the control input [17,18].

The control law in Eq. 7 yields a vector of current and future inputs. In
the real-time implementation of this control law, however, the current control
effort, u(k), is applied to the process and the future values are discarded at
each time step. Therefore, it is sufficient to compute the current control effort
as:

u(k) =hv,(k —p), (15)

where h denotes the first  rows of the matrix H. In turn, the update equation
can be rewritten to update the r X p(m + r) matrix h as:

h(k+1) = ah(k) = 2u{T"Q} y(k—s)vj (k—p—s), (16)

where the subscript r denotes the first 7 rows of the matrix T7 Q.

Equations 15 and 16 are the key equations for implementation of the adaptive
GPC algorithm. No assumptions have been made with regard to the num-
ber of inputs and outputs in the development of these equations. Therefore,
they can be applied to general multiple input-output systems. A listing of the
control algorithm for real-time implementation is shown below. As this listing
indicates, all that is needed to implement this algorithm is an estimate of the
observer Markov parameters and measurements of input-output data.

There are several parameters in the algorithm that must be tuned to achieve a
balance between optimal performance and stability of the controller: the model
order p, the prediction horizon s, the adaptive rate u, the leakage factor «,
and the sampling rate. Although the parameter values are problem dependent,
experience provides some guidelines for their selection. The model order is
selected through system identification. The key issue in this case is to chose p



large enough such that all of the pertinent open-loop dynamics are captured
by the model. The prediction horizon should be at least equal to the model
order, but in practice, is typically taken as 2 to 3 times the model order [9]. For
the sampling rate, experience indicates that a value 2 to 3 times the highest
frequency results in the best performance [9]. The highest frequency in the
present context is the highest Rossiter frequency of interest.

The parameter ;1 controls the convergence rate of the algorithm. As the value
of 1 is increased, the convergence time of the algorithm decreases, but for too
large a value, the algorithm will become unstable. Ideally, u should be chosen
such that the convergence time of the algorithm is smaller than the time scale
over which the process dynamics change.

As mentioned above, the numerical value of « is typically slightly less than
1. As the leakage factor approaches 1, the control effort penalty decreases,
resulting in a more aggressive controller. It is important to recall that a also
depends on u; i.e., « = 1 —2uy. For example, if p is decreased but o remains
the same, the implication is that v has increased. A larger value of v results in
a larger control-effort penalty and therefore, a more sluggish, stable controller.
The upshot of this interdependence is p and o must both be tuned to achieve
a balance between the optimal performance, convergence rate, and algorithm
stability.

Algorithm Listing

System Identification

Determine the ARX parameters and form the matrix, {TTQ}
Initialization
Initialize the algorithm by setting

h(0)=0

For each time step
Update the data vectors ys(k — s) and v,(k —p — s)
Update the controller coefficients

h(k+1)=ah(k) — 22 {T"Q} y.(k —s)v, (k—p—s)
Compute the current control effort

u(k) =h(k)v,(k - p)




3 Experimental Details

The experimental hardware used for the adaptive GPC experiments was the
same as that described in Part 1. All experiments were performed in the NASA-
Langley Research Center Probe Calibration Tunnel (PCT). The rectangular
cavity model was fixed to an aspect ratio of £/d = 5. As before, the cavity
model was instrumented with a pair of piezoresistive pressure transducers; one
sensor located in the front cavity wall centerline 12 mm down from the leading
edge and the second located on the floor centerline 15 mm upstream from the
rear wall. The actuator was a piezoelectric bimorph cantilever beam with its
tip situated at the cavity leading edge. The actuator response was found to be
characteristic of a 2nd-order under-damped system with a natural frequency
of ~ 1200 Hz and a DC gain of ~ 0.25 ym/V. The control hardware consisted
of anti-alias filters, a 16 bit A/D, a floating-point DSP, a 14-bit D/A, and a
reconstruction filter. The adaptive GPC algorithm was coded and compiled
to run on the DSP at a sample-time interval of 250 us. Further details on the
experimental hardware and setup can be found in Part 1.

4 Results and Discussion

The results of the control experiments are presented in this section. Three
freestream Mach numbers were considered: M., = 0.275, 0.32, and 0.38.
Throughout the tests, the cavity geometry was fixed to an aspect ratio of
¢/d = 5, the total pressure was 138 kPa, and the total temperature was 297
K. The Reynolds number based on cavity length (Rey = Uy /v)) for the three
conditions ranged from 1.2 x 10% to 1.6 x 10°. Baseline pressure spectra for
the three test conditions are presented in Fig. 2. A single-input, two-output
ARX model of the cavity dynamics was formed for each Mach number using
experimental input-output data and the OKID algorithm of Juang et al. [6-8].
A model order of p = 80 was used for all test conditions. Data were collected
to describe both the transient behavior of the controller, while the control co-
efficients were converging, and the steady-state behavior, after the coefficients
had converged.

4.1 Transient Behavior of the Control Algorithm

The time evolution of the closed loop performance of the algorithm was ex-
amined through measurement of unsteady pressures and controller coefficients
while the control algorithm was adapting. Unsteady pressure time series were
collected in a pre/post trigger mode, where the trigger condition was control

10



on. The adaptive controller coefficients were also sampled at every 100th time
step. Ten triggered data sets were acquired for each test condition so stochas-
tic variations in convergence behavior could be averaged out. In each case, the
initial controller coefficients were set to zero.

The short-time Fourier transform (STFT), which provides a measure of time
evolution in the frequency domain, was estimated for each of the 10 triggered
data sets and block averaged to reduce random uncertainty in the estimate.
The STFET of a pressure signal is defined as [19]:

STFT(t,w) = /p(T)w*(T —t)e T, (17)

where x denotes the complex conjugate and w(t) is a window function that
has a short duration. The STFT is typically visualized by plotting the square
of the magnitude as a contour plot. This “spectrogram” represents the time-
dependent power spectrum of the time series. The spectrogram was estimated
by dividing the time series into several overlapping blocks, each one advancing
in time. The blocks were then multiplied by a hanning window function and
Fourier transformed. The time and frequency resolution of the STFT was 13
ms and 7.8 Hz, respectively. The STFT was estimated for each of the 10
triggered data sets and then block averaged to reduce the random uncertainty
in the estimate.

Spectrograms of the rear-floor pressure at M., = 0.275 for two different values
of the adaptation parameter are shown Figs. 3 and 4. All algorithm parame-
ters were the same between these two runs except the adaptation parameter,
1, was ten times higher in Fig. 3 than in Fig. 4. In each plot the vertical line
at 0 seconds denotes control on. The spectral lines associated with the first
four Rossiter modes are clearly evident in the figures. After control is on, as
the control coefficients adapt, the amplitude of each Rossiter mode is reduced,
eventually reaching an asymptotic level. An examination of the sampled con-
troller coefficients reveals that they reach a steady-state level in the mean.
However, the coefficients do exhibit stochastic fluctuations about these mean
levels.

The primary difference between the spectrograms is the rate at which the
Rossiter modes reach their final suppressed levels. For the smaller u value
data presented in Fig. 4, it takes an order of magnitude longer for the final
state to be achieved. This can be seen more easily by plotting the values of
the two spectrograms at a particular frequency versus time. The spectrogram
data at f = 613 Hz, plotted in Fig. 5, represents the time evolution of Rossiter
mode 2 for the two adaptive rate values. The baseline level of the spectrogram
has been shifted so that it reads 0 dB prior to control on. For u = 1 x 1074,
Rossiter mode 2 is suppressed by approximately 10 dB within a few seconds
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of control on. Decreasing the value of x4 by an order of magnitude increases
the convergence time by the same factor, but the final level of suppression is
the same.

In part I, the input sensitivity function was shown to provide a good measure
of control performance. To see if this is the case for the adaptive controller,
the sampled controller coefficients and the open-loop plant model were used
to compute the input sensitivity at f = 613 Hz for every 100th time step.
In doing so, a key assumption is that the controller coefficients are “frozen”
at their current values for any given time step. This was performed for each
of the 10 data sets and then block averaged. The results are shown in Fig. 5
for comparison to the spectrogram data. Like the measured mode amplitude,
the input sensitivity also reaches a steady state level. This occurs because
the controller transfer function converges to a steady state. The convergence
of the controller transfer function to a steady state suggests that adaptation
can be stopped after some time to freeze the controller coefficients with no
degradation in performance. Pressure spectra measured with a fixed set of
converged controller coefficients confirmed this.

It is of interest to note that the averaged sensitivity data presented in Fig. 5
is much smoother than the averaged STFT data. This is because the adaptive
GPC, due to its recursive nature, inherently averages noise in the pressure
responses. The controller coefficients, although they do vary stochastically,
will vary much less than the actual unsteady pressures, for most reasonable
values of adaptation rate, u. The relationship between S; variance and p can
be observed in Fig. 5, where lower values of ;1 exhibit less variance in the input
sensitivity.

The input sensitivity is observed to closely match the trend of the measured
mode amplitude with time and therefore, it can be used to study the transient
control performance at other Rossiter frequencies. In Fig. 6, the input sensi-
tivity at Rossiter modes 1 through 4 for the M, = 0.275 case is plotted for
two adaptive rates. The plot demonstrates that the different Rossiter modes
are suppressed at different rates. The dominant mode is suppressed first, fol-
lowed by the second largest mode, and so on. Nevertheless, given sufficient
time, all Rossiter modes reach a steady-state level of suppression for a fixed
Mach number.

4.2 Steady-State Control Performance

As discussed in the previous section, the controller coefficients were found to
converge to steady-state values in the mean. Repeated runs of the adaptive
control algorithm at a fixed Mach number further revealed that the controller
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coefficients converge to the same values. Once the controller converged, time
series of the unsteady wall pressures were collected and pressure spectra were
computed. The spectra were computed using 1024 point FFTs, a hanning
window, 50% overlap, and 160 block averages. the frequency resolution for the
power spectrum estimates was 3.9 Hz.

Control results for the three Mach number conditions are presented in Figs. 7a,
8a, and 9a. The figures show baseline and controlled pressure spectra measured
at the rear-floor sensor. These results are representative of the best perfor-
mance achieved for each flow condition, given several runs of the controller for
a range of algorithm parameters. Table 1 lists the algorithm parameters for
the results shown in Figs. 7, 8, and 9. For all cases, the model order used in
system identification was 80 and the prediction horizon was set to 240. The
sensor weights for the two outputs were zero for the front sensor (¢;) and one
for the rear sensor (g2). The control performance was found to be weakly de-
pendent on the sensor weights, and only subtle differences were observed with
different values of sensor weightings. At each flow condition the convergence
rate, u, and leakage parameter, o were adjusted to achieve the best perfor-
mance while maintaining stability and avoiding actuator saturation. Multiple
Rossiter modes were suppressed by the control algorithm at all three condi-
tions. For the M., = 0.275 case in particular, the first four Rossiter modes
exhibit some suppression. The broadband levels of the pressure fluctuations
are not significantly altered in any of the control runs.

In part I, a performance measure was defined as:

[ya(f)ll2

IyalDll2 (18)

where y and y,; are vectors of the output sensor spectra for the controlled and
baseline cases, respectively, and || - || is the 2-norm. Eq. 18 essentially provides
a scalar measure of disturbance rejection for the multiple output sensors, where
a value less than one indicates disturbance attenuation and a value greater
then one indicates disturbance amplification. The performance measure was
calculated for each of the control cases and the results are represented by
the dashed lines in Figs. 7b, 8b, and 9b. Like the fixed-gain control results,
the performance measure for adaptive GPC is less than one at the Rossiter
modes, but is always accompanied by amplification in sideband frequencies,
1.e., spillover is present.

Using the converged controller coefficients and the open-loop plant model,
the input sensitivity function was computed for each of the test cases. The
results are presented in Figs. 7b, 8b, and 9b. Again, the input sensitivity
is found to be in close agreement with the performance measurement. The
character of these control-performance measurements is as expected in view
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of the results presented in Part I. The physical collocation of the actuator
with the disturbance, in part, gives rise to the spillover that is observed in the
control results.

Previous control results obtained with fixed-gain GPC were based on the as-
sumption of linear and time invariant cavity dynamics for a given fixed Mach
number. That assumption was used in the present development and applica-
tion of an adaptive GPC algorithm. The agreement between the measured
control performance and input sensitivity function, both in the transient and
steady-state cases, tends to further support these assumptions. It is also of
interest to compare the performance of adaptive GPC to that of the fixed-
gain GPC designed offline. Fixed-gain GPC and adaptive GPC results for
M, = 0.275 are compared in Figs. 10a, and 10b. The pressure spectra for
the two cases are nearly identical, both yielding suppression of the first four
Rossiter modes. The measured performance and input sensitivity are also ob-
served to be in close agreement, suggesting that the controller transfer func-
tions for the two cases are essentially the same. Examination of these perfor-
mance measures at other test Mach numbers indicates similar agreement.

4.8  Adaptation to Time Varying Mach Number

The adaptive GPC algorithm presented in this paper requires an estimate of
the pulse response sequence of the open-loop plant. For a fixed Mach number,
the results of the previous section indicate that the pulse response sequence
can be determined offline from open-loop, input-output data and then subse-
quently used in the real-time control algorithm. If the Mach number changes,
however, the open-loop dynamics change. Then, the open-loop dynamics will
have to be identified with a recursive algorithm. This has not yet been im-
plemented in our experimental program. It is still of interest to consider the
robustness of the adaptive algorithm to changes in the freestream Mach num-
ber without re-identification of the system. To that end, system identification
was performed at M., = 0.275. The control algorithm was then run at that
Mach number and the controller was allowed to converge. The Mach number
was then slowly increased to 0.28, while the controller continued to run, and
time-series data were collected. Then, the Mach number was increased to 0.29
and data were again collected. Beyond this Mach number, a stable controller
could not be maintained.

Baseline and controlled pressure spectra measured at the rear-floor sensor for
My, = 0.28 and 0.29 are shown in Fig. 11. For this small change in Mach num-
ber (~ 9 %) the controller is observed to maintain suppression in the first four
Rossiter modes. Previous authors [20] have shown that for gradient descent
algorithms where the gradient is filtered by a plant model, the condition for
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stability of convergence is that the ratio of the plant model to the true plant
must be strictly positive real. For the current application, this condition can
be written

$(w) = R [Goars(jw)Gyy(jw)] >0 Yo, (19)

where G}, (jw) denotes the complex conjugate of the true plant from actuator
to error sensors at the Mach number M, and G o75(jw) denotes the transfer
function model for M., = 0.275, which was the model used in the gradient
update equation.

Although Eq. 19 requires knowledge of the true plant transfer function at each
Mach number, an approximation to the condition in that equation can be
obtained by using identified models of the plant at each Mach number. Figure
12 shows the real part of the product in Eq. 19 for the path from actuator
to rear error sensor at three Mach numbers. At M, = 0.275 and 0.29 the
real part is greater than zero across the entire frequency range, indicating
convergence should be stable. However, at M, = 0.30, the real part is less
than zero just above 600 Hz and just below 1000 Hz. These results thus confirm
the experimental observations.

5 Conclusions

In this article, self-tuning adaptive control of cavity flow-tones was considered,
with particular emphasis on the development of an online controller design
algorithm. The open-loop cavity dynamics were assumed to be linear and
time invariant for any given fized Mach number. A stochastic gradient decent
algorithm was employed to update the coefficients of a generalized predictive
controller at each time step. Past input-output data and an estimate of the
open-loop pulse response sequence are needed to implement the algorithm for
application at fixed Mach numbers.

Measurements of unsteady cavity pressures and controller coefficients during
adaptation were made to examine the transient characteristics of the con-
trol algorithm. Joint time-frequency methods showed that multiple Rossiter
modes were suppressed and eventually reach a reduced steady-state level. The
controller coefficients were also found to converge to a steady-state level, and
this implies that controller adaptation can be turned off at some point with
no degradation in control performance. Spectra of unsteady pressure time-
series acquired after controller convergence exhibited multiple Rossiter mode
suppression for each of the Mach numbers tested. However, as in the case
of fixed-gain GPC, the adaptive GPC control performance was limited by
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spillover in sidebands around the suppressed Rossiter modes. No significant
reduction in the broadband pressure levels was achieved in any of the con-
trol runs. The control performance for fixed-gain GPC and adaptive GPC was
compared and found to be nearly identical. This agreement further supports
the linear, time-invariant treatment of the open loop cavity flow dynamics at
fixed Mach numbers.

Finally, adaptive GPC was applied to the cavity flow-tone problem as the
freestream Mach number was varied. The algorithm was able to maintain sup-
pression of multiple cavity tones over a modest change in Mach number (0.275
to 0.29). Beyond this range, stable operation of the control algorithm was not
possible. This limitation was the result of using a fixed plant model in the al-
gorithm. To achieve the ultimate goal of self-tuning adaptive control for cavity
flow tones, the system dynamics must be recursively updated. The present pa-
per series has demonstrated that real-time feedback control of multiple cavity
tones with online control design is feasible. Previous work by Kegerise et al.
[5] considered various recursive system identification algorithms that can be
used for ARX models of the cavity flow dynamics. With online system identi-
fication, a self-tuning adaptive controller that can maintain suppression over
a range of Mach numbers should be realized.
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